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Abstract: The increasing use of thermostatically controlled loads (TCLs) like refrigerators 

poses a significant challenge to the grid due to their potential to increase peak demand. This 

study introduces a novel rule-based peak-shaving algorithm to effectively manage these 

loads. The algorithm operates in two modes: day-ahead and real-time. In the day-ahead 

mode, Long Short-Term Memory (LSTM) neural networks are utilized to forecast demand 

and generation. A Parameter tuned Grey Wolf Optimizer (GWOP) is proposed and employed 

to determine the optimal generation for the initial timestep of the scheduling period. The 

GWOP is tuned using a brute-force grid search method to optimize its parameters. In the 

real-time mode, the algorithm dynamically adjusts refrigerator operations based on real-

time mismatch calculations between predicted demand and generation. Dynamic flexibility 

thresholds are employed to determine the optimal operation of refrigerators during peak and 

off-peak periods. This approach aims to minimize energy consumption while maintaining 

thermal comfort. The algorithm's performance was evaluated using real-world data from the 

Spanish Transmission Service Operators (TSO). The results demonstrate a significant 

reduction in peak demand and total energy consumption. The algorithm with dynamic 

flexibility achieved a substantial 18.89% reduction in peak demand and a notable 12.12% 

decrease in total energy consumption. 

 

 

1. INTRODUCTION 

 

 As the world undergoes rapid urbanization and industrialization, electricity demand has 

surged, especially in developing countries where villages and towns are transforming into urban 

centers. This increased urbanization, coupled with global warming, has significantly raised the 
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usage of thermostatically controlled loads (TCLs) such as refrigerators and air conditioners in 

households and offices [1] Air conditioners account for 14% to 20% of total energy 

consumption in buildings [2], while refrigerators consume about 10% [1]. 

The widespread use of TCLs poses a challenge to network stability, particularly in 

countries with insufficient power generation capacity [3,4]. This can lead to network stress, 

load shedding, demand-supply mismatches, and increased electricity costs. For consumers, this 

instability translates into higher costs of consumption, increased cost of economic activities and 

reduced comfort. Load shedding disrupts daily activities, while demand-supply mismatches 

drive up electricity prices as utilities purchase power at higher rates or invest in expensive 

peaking plants. Despite these potential challenges of wide usage of TCLs, they offer advantages 

for demand-side management (DSM) due to their thermal storage capabilities. Demand-side 

management strategies can leverage this flexibility to maintain grid stability, reduce operational 

costs, and ensure a reliable electricity supply. One effective strategy is peak demand shaving, 

which involves shifting TCL operations to off-peak periods to reduce stress on the power 

system during peak hours [5,6].  

Peak demand shaving has been achieved using energy storage systems (ESS), DSM, 

and renewable energy integration [7]. Techniques such as optimal appliance scheduling and 

rule-based methods have been used, with significant work focused on using ESS and heaters 

for peak management. A simulation on an established building was conducted by [8] to 

determine the optimal DSM strategy from a building owner's perspective. The analysis revealed 

that power peak shaving of over 30% could be achieved without significantly impacting indoor 

conditions. Authors in  [9] employed agent-based intelligence to flatten the thermal load of a 

group of buildings. The work done in [10] utilized a stable roommate’s algorithm to minimize 

the sum of the thermal requests for 28 buildings in England. However, these studies did not 

consider the network dynamics in forming the overall district heating thermal request. Authors 

in [11] used genetic algorithm optimization to minimize the maximum peak value, achieving a 

10% reduction in overall thermal demand with minimal schedule variations. Authors in [12] 

applied the same algorithm for rescheduling, accounting for more significant modifications and 

the effects of indoor temperature changes. Authors in [13] presented a field test campaign on 

two district heating networks using the STORM controller, which reduced peaks by 7.5% – 

34%, saving operational costs and reducing CO2 emissions. Authors in [14] developed an active 

control strategy using a Model Predictive Control algorithm to maximize cogeneration plant 

profits by using buildings as storage capacity and selling electricity on the spot market at peak 

prices. Reinforcement Learning (RL) has been marginally used for directly addressing peak 

demand issues in district heating, typically applied to electric energy peak-shaving. The work 

done in [15] used an iterative Q-learning algorithm for energy arbitrage and peak-shaving of 

thermostatically controlled loads in a district heating system. Work done in [16] addressed 

thermal load management at the building level to reduce thermal peaks while maintaining user 
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comfort. Demand-side management through multi-agent models to coordinate individual 

requests and reduce intra-daily fluctuations in thermal demand has also been proposed by  [17]. 

In terms of rule-based approaches for peak shaving, limited research has been done. 

These mostly involve the use of ESS rather than TCLs. The study in [18] utilized a genetic 

algorithm (GA) to determine optimal inputs for peak shaving using rule-based method. The 

proposed optimal rule-based approach was applied to battery scheduling to shape peak. 

Although the method was effective, the rules employed to develop the proposed rule-based 

approach were complex and involved a lot of computation.  Authors in [19] introduced a real-

time battery management algorithm for peak demand shaving for commercial buildings. 

However, the work did not account for a dynamic demand limit that can be adjusted to meet 

various peak requirements for commercial buildings. Additionally, studies done in [20–22] 

evaluated peak shaving control with battery scheduling, considering a fixed demand limit. The 

fixed limits presented tight tolerance for the algorithms to operate leading to the creation of 

additional peaks and increased energy consumption. Again, the study carried out in [23] 

considered a dynamic demand limit for the peak shaving method. However, the method was 

specifically applied to Malaysian commercial buildings. Authors in [24] considered a battery 

controller with a fixed demand limit for peak shaving but did not maintain flexibility in day-to-

day management. 

Although a good amount of work has been done on peak shaving involving TCLs, ESS 

and renewables, there are some existing gaps. The literature mostly focuses on optimizing 

thermal loads and minimizing thermal requests without considering the network dynamics and 

their impact on overall thermal demand. Methods such as those using genetic algorithms (GA) 

for peak shaving (e.g., [11], and [25]) and the complex rule-based approaches for battery 

scheduling (e.g., study [18]) involve significant computational complexity which may not be 

feasible for real-time or resource-constrained environments. Many studies, including those by 

[14] have applied fixed demand limits or static control strategies. Even though some works 

(e.g., study [23]) considered dynamic demand limits, they were context-specific (e.g., applied 

to Malaysian commercial buildings) and did not offer a generalizable approach. This work 

proposes a simple rule-based peak-shaving algorithm with dynamic flexibility thresholds for 

scheduling refrigerators in real time. The proposed algorithm employs a two-level approach: 

day-ahead optimization and intra-day real-time adjustments. The research aligns with Goal 7 

of the Sustainable Development Goals (SDGs), which aims to ensure access to affordable, 

reliable, sustainable, and modern energy for all by 2030 [26]. 

 

1.1. Research contributions 

 

 The research contributions of the paper are outlined below: 

A novel rule-based peak shaving algorithm has been proposed to schedule refrigerators, 

to reduce peak demand. The rule-based algorithm simplifies decision-making by using pre-
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defined rules and dynamically adjustable parameters. This reduces the computational 

complexity of optimization-based approaches like genetic algorithms or multi-objective 

optimization problems. The proposed algorithm incorporates dynamic flexibility thresholds that 

adjust based on the system's real-time conditions. This allows for more flexible and efficient 

management of peak demand. 

A data-driven estimation method using smoothing error is proposed to predict future 

generation in the rule-based algorithm for decision making. The smoothing error method is a 

statistical technique that uses historical data to smooth out irregularities and provide a more 

accurate prediction of future generations. This method is integrated into the rule-based 

algorithm to enhance its predictive capabilities and reduce the computational intensiveness of 

existing forecasting algorithms. 

A simple discrete thermal model of a refrigerator is proposed to simulate the cooling 

and warming behaviour of refrigerators to test the proposed rule-based algorithm on a case 

study dataset. 

 

1.2. Structure of paper 

 

The rest of the paper is organized as follows: Section 2 discusses the proposed rule-

based peak-shaving algorithm and its sub-control algorithms. Section 3 describes the proposed 

refrigerator thermal model for the study. The case study dataset used to validate the algorithm's 

performance is described in Section 4 in addition to the performance metrics employed to assess 

the algorithm's effectiveness. Section 5 presents the results and discussion. Conclusions and 

recommendations for future works are discussed in section 6. 

 

 

2. DESCRIPTION OF PROPOSED RULE-BASED PEAK SHAVING FRAMEWORK 

AND ALGORITHM  

 

 This section presents the proposed data-driven, rule-based peak-shaving algorithm for 

refrigerators. The proposed framework within which the proposed rule-based peak shaving 

algorithm runs is given in Fig. 2. The framework is designed to run in day-ahead and real-time 

modes to reduce computational intensity. In the day-ahead, a forecast of demand and generation 

is done using long short-term memory (LSTM). The forecast output is used to identify possible 

peak and off-peak periods a day-ahead by analyzing the predicted demand against predicted 

generation using a simple logical algorithm. Again, to make decisions in real-time and reduce 

computational complexity, an optimization problem is defined to determine the possible 

optimum generation that the system operator can supply. This is solved with a proposed 

parameter tunned grey optimizer.  The optimum generation is subsequently updated in real time 

using a smoothing error method.  
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The proposed rule-based algorithm then takes decision by comparing current demand 

with updated generation. If a mismatch is detected beyond a certain threshold, the algorithm 

adjusts the status of refrigerators by either turning them on or off to align demand with available 

generation capacity. This process continues until the mismatch falls within an acceptable limit. 

Details of these processes are discussed in the subsequent subsections. 

 

2.1. Forecasting of Day-Ahead Demand and Generation with Long Short-Term Memory 

Neural Network. 

 

Accurate forecasting of day-ahead demand and generation is crucial for optimizing grid 

operations and maintaining system stability especially in demand response programs. In this 

study, a Long short-term memory (LSTM) neural network is employed to forecast the day-

ahead demand (PD
′ ) and generation (Pg

′). This forecast serves as a fundamental input for the 

proposed rule-based peak shaving algorithm.  The output from the forecast is used to forecast 

and identify the possible peak and off-peak periods a day-ahead within the real-time scheduling 

horizon. By analysing the forecasted demand in relation to the forecasted generation, the 

framework effectively pinpoint the periods of highest and lowest demand beyond a certain 

margin of the generation, which are classified as peak and off-peak, respectively. These 

classifications are subsequently fed into the peak shaving algorithm which enables the 

algorithm to make informed decisions regarding the refrigerator scheduling. This pre-emptive 

approach helps to reduce real-time computational complexities and enhance the overall 

efficiency of the algorithm’s operations. 

The LSTM architecture employed in the study is shown in Fig. 1 [27]. It is modelled 

and operated with the forget gate, input gate, candidate cell state, cell state and output gate, 

described with (1) - (6), respectively.  The forget gate (ft) decides the information to remove 

from the cell state (ct), the input gate (it) decides which values to update in the cell state, and 

the candidate cell state (ct)̃ creates a vector of new candidates’ values that could be added to 

the state, cell state updates by combining the old state and the now candidate values and the 

output gate (ot)  decides what the next hidden state (ht) should be, based on the cell state. 

 

ft = σ(Wf. [ht−1, xt] + bf                                                   (1) 

 

it = σ(Wi. [ht−1, xt] + bi)                                                  (2) 

 

ct̃ = tanh (WC. [ht−1, xt] + bc)                                          (3) 

 

ct = ft ⊙ ct−1 + it ⊙ ct̃                                                     (4) 
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ot = σ(Wo. [ht−1, xt] + bo)                                              (5) 

 

ht = ot⨀tanh (ct)                                                            (6) 

 

In the LSTM model, xt is the input data,  σ is the sigmoid function,  tanh is the tangent 

function, W and b are weight and biases applied during training of the LSTM model 

respectively. 

 

Input gate Output gate forget     gate 

ct

htht-1

Ct-1

tanhsig sig sig

Cell state 

tanh

ft it
ot

Ĉt 

Xt  

Fig. 1. Architecture of LSTM for forecasting day-ahead demand and generation 

 

Historical time series data Xt = [xt
d, xt

g
, xt

temp
, xt

a, xt
s],, including demand (xt

d)  , 

generation (xt
g
) , ambient temperature (xt

temp
), solar irradiance (xt

a), and solar power 

generation (xt
s), are collected and preprocessed. These variables are critical determinants of 

demand and generation patterns, providing the LSTM with the necessary context to predict 

future values accurately. The data is first preprocessed to normalize the values, ensuring that 

all features contribute equally to the model's learning process. Missing data points are addressed 

through interpolation, and the dataset is divided into training, validation, and test sets to 

evaluate the model's performance. During training, the LSTM model is fed sequences of input 

data spanning multiple time steps, forming an input vector Xt = [Xt − T + 1, Xt − T +

2,… , Xt], or each time t, where T represents the sequence length. The model uses these 

sequences to predict the target variables—day-ahead demand and generation. The training 

process involves minimizing mean squared error (MSE) between the predicted demand and 

generation and their actual values in the training set. The model's parameters (weights and 

biases) are optimized using backpropagation. The learning rate, batch size, and number of 
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epochs are carefully tuned to ensure convergence without overfitting. Fig. 2 provides a 

flowchart for the method developed to forecast demand and generation. 
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Fig. 2. Proposed data-driven rule-based peak shaving framework 
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Fig. 3. Flow chart for forecasting demand and generation. 

 

2.2.Determination of Optimal Generation for First Timestep of Scheduling Period  

 

An optimal approach based on historical data is proposed in Algorithm 1 to estimate the 

potential generation the system operator can produce at the first timestep of the scheduling day 

(intraday). This enables the proposed rule-based peak-shaving algorithm to make proactive 

decisions in real-time during the scheduling period without rigorous continuous forecasting at 

each time step, thereby reducing intensive computation. The optimal generation is denoted as  

(PG
l ). By accurately estimating the first-time step generation day-ahead, the framework 

schedules the refrigerators at the first timestep using the proposed rule-based peak shaving 

algorithm before the actual generation data for the first timestep arrives. This initial (PG
l )  value 

is subsequently updated in real-time across the scheduling period using a smoothing error 

method in Algorithm 3.  

To determine the first timestep value of (PG
l ) for the scheduling day, an optimization 

problem is formulated based on historical data on solar power, power demand, and battery 

discharge data. The objective function of the optimization is formulated in (8), with the optimal 

generation (PG
l ) as the decision variable. To solve for (PG

l ) , a parameter-tuned grey wolf 

optimizer (GWOP) based on grid search tunning method is proposed in Algorithm 2. In this 
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work battery discharge data was not considered in the testing since data was not available. The 

GWOP finds an optimal value of (PG
l ) that makes the expression in (8) zero. 

 

f(PG
l ) = ∑ PD(t) − (PG

l (t) + PSolar(t) + Edisch(t))
T
t=1                        (8) 

 

In (8), PD, PSolar and Edisch are power demand, solar power, and battery discharge 

historical data respectively. The optimization problem is constrained by a lower limit 

(P G 
l (lower )) and an upper limit (PG

l  (upper)). The lower limit and upper limit are the 

minimum and maximum generation that can be supplied by the system operator. The 

pseudocode for determining the optimal generation (PG
l ) is given in Algorithm 1.  

  

Algorithm. 1. Determination of day-ahead optimal generation 

Step Start determination of day-ahead optimal generation at first timestep 

1 Inputs data: historical demand (𝑃𝐷), historical solar power generation (𝑃𝑠𝑜𝑙𝑎𝑟) 

2 Output: Optimal generated power (𝑃𝐺
𝑙 ) 

3 Solver initialization  

4 Call objective function based on equation (4.22) 

5 Set constraints: 

   Lower limit: 𝑃 𝐺 
𝑙 (𝑙𝑜𝑤𝑒𝑟 ) 

   Upper limit: 𝑃𝐺
𝑙  (𝑢𝑝𝑝𝑒𝑟) 

6 Initialize solver and set its parameters 

7 For 𝑖 = 1: number of iterations  

8       Solve for optimal solution  

9       𝑖 = 𝑖 + 1 

10 End For 

11 Output Optimal solution as (𝑃𝐺
𝑙 ) 

12 End 

 

2.3. Proposed Parameter Tunned Grey Wolf Optimizer for Determination of Optimal 

Generation for First Timestep of Scheduling Period 

 

In this paper, a grid search tunning method is employed to tune the classical grey wolf 

optimizer (GWO) to tune its parameters to enhance the algorithm’s performance to solve for 

the optimal generation limit (PG
l ). The classical grey wolf is explained below followed by the 

proposed parameter tuned grey wolf optimizer (GWOP). 

 

2.3.1 Grey Wolf Optimization  

The Grey Wolf Optimizer (GWO)  [28] is based on the hunting behavior of grey wolves. 

Grey wolves are social predators that hunt in packs. This hunting behavior enables them to 
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demonstrate a high degree of cooperation and strategy in their hunting behavior. Each wolf in 

the pack has a specific role. The alpha (best wolf) wolf leads the hunt, while other members 

follow its lead and assist in different capacities. The alpha (optimal solution) wolf is the 

dominant leader, responsible for deciding when and where to hunt. The beta wolf assists the 

alpha, taking on leadership roles when necessary. The beta wolves represent the second-best 

solution that help guide the search process and provide a search path for the alpha. Delta wolves 

assist in hunting and protection. They represent the third-best solution in the search space and 

support the alpha and beta in the optimization process. 

 

2.3.2. Mathematical Modelling of Metaheuristic Processes of GWO 

      The hunting mechanism of the grey wolves is characterized by a coordinated and 

strategic approach that involves several phases. The phases have been discussed below. 

 

Tracking, Chasing, and Approaching the Prey 

The wolves track and chase prey, using their sense of smell and hearing to locate it. This 

is an approach to cautiously get as close as possible to the prey without being detected. The 

wolves (candidate solutions) encircle the prey by updating their positions based on the distance 

from the alpha, beta, and delta wolves using (10). 

  

D⃗⃗ =  |C⃗ ∙ X⃗⃗ p(t) − X⃗⃗ (t)|                                               (9) 

 

X⃗⃗ (t + 1) =  X⃗⃗ p(t) − A⃗⃗ ∙ D⃗⃗                                         (10) 

 

In the update equation, X⃗⃗ (t) is the position of a grey wolf, X⃗⃗ p(t) is the position of the 

prey and A⃗⃗  and C⃗  are coefficients vectors calculated with (11) and (12). 

 

A⃗⃗ = 2a⃗  ∙ r 1 − a⃗                                                       (11) 

 

C⃗ = 2 ∙ r 2                                                            (12) 

 

Pursuing and Encircling the Prey 

Once the prey is close enough, wolves pursue and encircle it, cutting off escape routes 

and exhausting the prey. The algorithm simulates encircling behavior by having each wolf 

adjust its position relative to the positions of the alpha, beta, and delta wolves. This is 

mathematically modelled to ensure the wolves move closer to the optimal solution. The update 

equation for this phase is given in (16). 

 

X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1  ∙ |C⃗ 1 ∙  X⃗⃗ α − X⃗⃗ |                             (13) 
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X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2  ∙  |C⃗ 2  ∙  X⃗⃗ β − X⃗⃗ |                           (14) 

 

X⃗⃗ 3 = X⃗⃗ δ − A⃗⃗ 3  ∙  |C⃗ 3  ∙  X⃗⃗ δ − X⃗⃗ |                           (15) 

 

X⃗⃗ (t + 1) =  
X⃗⃗ 1+ X⃗⃗ 2+ X⃗⃗ 3 

3
                                           (16) 

Attacking the Prey 

The wolves attack once the prey is exhausted or cornered, ensuring a successful hunt. 

The algorithm converges on the optimal solution. As iterations proceed, the search space is 

exploited more intensively, refining the candidate solutions to converge on the best solution. 

 

2.3.3. Proposed Parameter Tunned Grey Wolf Optimizer 

The GWO has been applied to successfully solve numerous optimization problems, 

however, its performance is sensitive to the algorithm’s control parameters; alpha (α), beta (β) 

and delta (δ) which affects the exploration and exploitation abilities of the wolves. The grid 

search tunning method is employed to systematically tune the GWO to enhance its exploration 

and exploration to solve for (PG
l ). The grid search methods employ a brute-force method to tune 

the hyper-parameters of the GWO. In the tunning method, a finite set of values for alpha (α), 

beta (β) and delta (δ) are generated. The GWO is then evaluated for every possible 

combination of these values. The combination that yields the best performance is selected as 

the optimal set of parameters finding the optimal value.  

 

2.4. Update of Optimal Generation  

 

In the proposed rule-based peak shaving algorithm, the optimal generation for the 

second timestep to the end of the scheduling period (T) is updated by accounting for the 

discrepancy between the actual generation at the first timestep and the historical data on the 

optimal generation over a time window (w). The proposed update approach utilizes a smoothing 

error technique [29]. To update the optimal generation (PG
l )  for the next timestep in the intra-

day’s decision-making, the error between the actual generation (PG
actual) at the first timestep 

and the optimal generation a day before (PG
l (t − 24)) is calculated over a predefined time 

window size (w) and averaged. The average error is then added to the first timestep optimal 

generation (PG
l (t)) to determine the next timestep's generation limit for the scheduling period. 

The update of the optimal generation limit (PG
l ) is done using (17) - (19). The error 

(et)  between the actual generation at the beginning of the current day (PG
actual(t)) and the 

optimal generation determined the day before (PG
l (t − 24)) is calculated using (17). Historical 
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data on this error is built over the forecasting period to calculate a smoothing error for real-time 

updates to the optimal generation limit (PG
l ). 

 

et = PG
actual(t) − PG

l (t − 24)                         (17) 

 

The smoothing error over a predefined time window size w, is calculated as an 

average error using (18). 

et̅ =
1

w
∑ ei

t
i=t−w+1                                              (18) 

 

The optimal generation limit is then updated by (19). The pseudocode in Algorithm 3 

provides the detailed steps for the error calculation and generation (PG
l )  update. 

 

PG
updated(t) = PG

l (t − 24) + et̅                       (19) 

 

of  (PG
l ). The proposed tunning algorithm is given in Algorithm 2. 

 

Algorithm. 2. Proposed algorithm for tunning grey wolf optimizer 

Step Start parameter tunning of grey wolf optimizer (GWOP) 

1 Inputs:   

2 Parameter ranges for alpha 𝛼 ∈ [ 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] with step size ∆𝛼 

3 Parameter ranges for alpha 𝛽 ∈ [ 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] with step size ∆𝛽 

4 Parameter ranges for alpha 𝛿 ∈ [ 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] with step size ∆𝛿 

5 Number of iterations T, population size (P), objective function 𝑓(𝑥) 

6 Outputs: 𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡 and 𝑓𝑏𝑒𝑠𝑡 

7 For 𝑖 = 1: 𝑇 

8       For alpha 𝛼 ∈ [ 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑖𝑛 + ∆𝛼,… , 𝛼𝑚𝑎𝑥]: 

9               For alpha 𝛽 ∈ [ 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑖𝑛 + ∆𝛽,… , 𝛽𝑚𝑎𝑥]: 

10                    For alpha 𝛿 ∈ [ 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛 + ∆𝛿,… , 𝛿𝑚𝑎𝑥]: 

11                        Evaluate GWO with current combinations of 𝛼,𝛽 and 𝛿 

12                        Calculate fitness score 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

13                    End  

14               End  

15        End  

16  If 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑓𝑏𝑒𝑠𝑡  

17     Set 𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

18     Set  𝛼𝑜𝑝𝑡 = 𝛼 

19     Set 𝛽𝑜𝑝𝑡 =   𝛽 

20     Set 𝛿𝑜𝑝𝑡 = 𝛿 

21 End if  

22 End for  

23 End grid search  
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2.5. Identification of Day-Ahead Peak and Off-Peak Periods  

 

In the proposed rule-based peak shaving algorithm, a logical algorithm is proposed in 

Algorithm 4 to identify peak and off-peak periods within day-ahead forecasted demand data 

(PD
′ ) relative to day-ahead forecasted generation (Pg

′). In the proposed algorithm, peak periods 

are identified based on the condition that PD
′ (t) > Pg

′(t) by a certain margin above the system 

operator’s base load. The base load is taken as the optimal generation (PG
l ) across the scheduling 

period in this work. The algorithm iterates through the dataset at each timestep (t) to identify 

periods where the demand exceeds generation by the chosen margin. The identified periods are 

labelled as peak durations and are characterized by their start and end times. This approach 

allows the algorithm to proactively make decisions in real-time based on the forecasted 

generation rather than waiting for actual generation data to arrive. 

 

Algorithm. 3. Update of optimal generation in real-time 

Step Start update of generation limit   

1 Inputs Data 

2 Define window size (w) 

Get day-before optimal generation  (𝑃𝐺(𝑑𝑎𝑦−𝑏𝑒𝑓𝑜𝑟𝑒)
 𝑙 )  

Get actual generation  (𝑃𝐺
𝑎𝑐𝑡𝑢𝑎𝑙)  

3 Output 

4 Updated generation limit (𝑃𝐺(𝑢𝑝𝑑𝑎𝑡𝑒𝑑)
𝑙 )  

5 Smooth error calculation based on averaging window approach  

6 While current timestep < last timestep of data 

7 When a new timestep’s generation data arrives:    

8     Calculate error with equation (17) 

9           If length of error history < w:   

10              Append error to error history  

11           Else 

12             Remove oldest error from history 

13             Append new error to error history  

14          End If  

15 Update generation limit with equation (19) 

16 Increment current timestep by 1 

17 Output updated generation (𝑃𝐺
𝑙 ) 

18 End 

 

  



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

98 

 

Algorithm. 4. Determination of peak and off-peak periods 

Step Start identification of peak and off-peak durations  

1 Initialization 

2 Get forecasted demand data (𝑃𝐷
′ )   

3 Get forecasted generation data (𝑃𝑔
′).  

4 Initialize peak durations as an empty list (to store peak durations) 

5 Set start time to 0 (to track peak starts) 

6 Loop through demand data 

7   For 𝑖 =  1 to length (𝑃𝐷
′ ):  

8         If  𝑃𝐷
′ (𝑖) > 𝑃𝑔

′(𝑖) by margin: 

9                If start time == 0, Set start time to 𝑖(mark peak start) 

10         Else if 𝑃𝐷
′ (𝑖) < 𝑃𝑔

′(𝑖): 

11                If start time!= 0, Calculate peak duration and save it in peak  

12                   durations list, the set start time to 0 (reset peak start)   

13                End If  

14         End If 

15     End for 

16 Handle end-of-Series Peak 

17    If start time != 0, calculate final peak duration 

18    End If     

19 Output 

20 Print peak durations as "Start Time, End Time" pairs. 

21 End 

 

2.6.Proposed Rule-Based Peak Shaving Algorithm 

 

This section discusses the proposed rule-based peak-shaving algorithm for scheduling 

refrigerators. The algorithm aims to monitor real-time power demand (PD) and generation (PG) 

data to take decisions to align demand with available generation capacity based on predefined 

rules.  The proposed algorithm is shown in Fig. 4. The peak and off-peak period controls are 

given in Algorithm 5, 6, and 7. The decision-making process of the proposed algorithm 

primarily involves establishing decision making parameter, peak and off-peak period control. 

During peak periods, the algorithm prioritizes turning OFF refrigerators to shave the peak 

demand. Conversely, during off-peak periods, the algorithm turns ON refrigerators to balance 

the overall demand. The algorithm's dynamic adjustment to real-time conditions is a critical 

feature. It updates the optimal generation (PG
l ) and other decision parameters based on the latest 

data received to ensure the power system's responsiveness to changing network conditions. 

Details of the controls within the algorithm are discussed below. 
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2.6.1. Decision Making Table 

The control table for decision-making in the algorithm is given in Table 1. The table 

summarizes the conditions under which the algorithm operates and the corresponding action to 

be taken to aggregate the refrigerators. The variable 𝑃𝐷 is the demand at current timestep and 

 𝑌 is the mismatch threshold. The mismatch threshold determines the acceptable level of power 

mismatch during peak and off-peak period control. The variable current refrigerator status (Si,t
b ) 

is the status of the ith refrigerator at time t, where 0 indicates OFF and 1 indicates ON. The 

variable new refrigerator status (Si,t
n ) is the new status of the ith refrigerator at time t determined 

by the algorithm`s control logic. Finally, the action description shows the action taken by the 

algorithm based on the current system conditions.  

 

Table 1. Peak and Off-Peak Decision-Making Conditions 

Condition 

Check 

Control 

Condition 

Current 

Refrigerator 

Status (𝐒𝐢,𝐭
𝐛 ) 

New 

Refrigerator 

Status (𝐒𝐢,𝐭
𝐧 ) 

Action 

Description 

Peak period && 

(PD
′ )  > (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

0 (OFF) 0 (OFF) Maintain TCL 

OFF 

Peak period && 

(PD
′ )  > (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

1(ON) 0 (OFF) Turn OFF TCL 

 Peak period 

&& 

(PD
′ )  ≤ (PG

l )  

If mismatch 

threshold (Y) is 

not exceeded 

Any Any Maintain status 

Off peak period 

&& 

(PD
′ )  < (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

1 (ON) 1 (ON) Maintain TCL 

ON 

Off peak period 

&& 

(PD
′ )  < (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

0 (OFF) 1 (ON) Turn ON TCL  

Off peak period 

&& 

(PD
′ )  ≥ (PG

l )  

If mismatch 

threshold (Y) is 

not exceeded 

Any Any Maintain status 
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Fig. 4.Proposed rule-based peak shaving algorithm 

 

2.6.2. Algorithm Initialization  

The proposed rule-based peak shaving algorithm is initialized as follows: 

 

Step Initialize algorithm  

1 Get real-time demand 𝑃𝐷(𝑡) 

2 Get history of previous optimal generation  (𝑃𝐺
𝑙 ) 

3 Run LSTM forecast and output  (𝑃𝐷
′ )  and  (𝑃𝑔

′), 

4 Run Algorithm 1: output optimal generation at first timestep (𝑃𝐺
𝑙 ) 
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Step Initialize algorithm  

5 Run Algorithm 4 on step 3: output peak and off-peak periods.  

6 Get critical temperature (𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) 

7 Get current compartment temperatures of all refrigerators: 𝜃𝑐 

 

2.6.3. Peak Period Handling  

During the peak periods, the algorithm’s rules are designed to reduce the demand to stay 

close to the real time generation (PG) by turning OFF as many refrigerators as possible. The 

number of refrigerators to be turned off by the algorithm is limited by the mismatch threshold 

(𝑌) . This action helps to shave the peak demand and prevent grid overload. The peak period 

control and decision-making steps are provided in Algorithm 5. 

 

Algorithm 5. Peak period handling 

Step Start peak period control and aggregation  

1 If 𝑡 is within a peak period:  

2 Calculate power mismatch=|𝑃𝐷
′ (𝑡) − 𝑃𝐺

𝑙 (𝑡)|  

3 If 𝑃𝐷
′ (𝑡) > 𝑃𝐺

𝑙 (𝑡),  

4 If current power mismatch >𝑌:  If no skip to the next timestep.    

5 Else 

6      For 𝑖=1 to N:                                          // start aggregation                                  

7           If 𝑆𝑖,𝑡
𝑏 =0, set new status: 𝑆𝑖,𝑡

𝑛 =𝑆𝑖,𝑡
𝑏                         

8           Else set new status: 𝑆𝑖,𝑡
𝑛 =0                                        

9           Begin warming of refrigerator 𝑖  

10           Start waiting time for next schedule of refrigerator 𝑖  

11 Update aggregated demand: 𝑃𝐷(𝑡) = 𝑃𝐷(𝑡)+ 𝑆𝑖,𝑡
𝑛 .𝑃𝑟 

12 If |𝑃𝐷(𝑡) − 𝑃𝑔
′(𝑡)| < 𝑌, break                     // stop aggregating   

13 Update mismatch threshold 𝑌 

14 Update 𝑃𝐺
𝑙 (𝑡) 

 

2.6.4. Off-Peak Period Handling  

During the off-peak periods, the algorithm’s rules are designed to turn ON refrigerators 

to increase the demand by utilizing the excess generation and preventing generation from going 

to waste.  The off-peak period controls and decision-making steps are provided in Algorithm 6.  

 

Algorithm 6. Off-peak period handling 

Step Start off-peak period control and aggregation  

1 If 𝑡 is within off-peak period:  
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Step Start off-peak period control and aggregation  

2 Calculate power mismatch=|𝑃𝐷
′ (𝑡) − 𝑃𝐺

𝑙 (𝑡)| 

3 If 𝑃′𝐷(𝑡) < 𝑃𝐺
𝑙 (𝑡) 

4 If current power mismatch >Y: If no skip to the next timestep.    

5 Else 

6        For 𝑖=1 to N:                                              // (start aggregation)          

7               If 𝑆𝑖,𝑡
𝑏 =1, set new status: 𝑆𝑖,𝑡

𝑛 =𝑆𝑖,𝑡
𝑏  

8               Else set new status: 𝑆𝑖,𝑡
𝑛 =1         

9               Begin cooling of refrigerator 𝑖  

10               Start waiting time for next schedule of refrigerator 𝑖 

11 Update aggregated demand: 𝑃𝐷(𝑡) = 𝑃𝐷(𝑡)+ 𝑆𝑖,𝑡
𝑛 .𝑃𝑟 

12 If |𝑃𝐷(𝑡) − 𝑃𝑔
′(𝑡)| < 𝑌, break                          // (stop aggregating)        

13 Update mismatch threshold Y 

14 Update 𝑃𝐺
𝑙 (𝑡) 

 

2.6.5. Proposed Dynamic Mismatch Threshold 

In the proposed rule-based algorithm, a dynamic adjustment is employed based on 

system conditions to adjust the mismatch threshold. A dynamic adjustor based on sigmoid 

function is proposed to smoothly adjust the mismatch threshold at each timestep based on the 

difference between actual generation at the previous timestep (PG(t − 1)) and actual demand 

at the previous timestep (PD(t − 1)). The dynamic thresholding method ensures that the 

algorithm adapts to changing system conditions more effectively to maintain a balance between 

demand and supply while avoiding the pitfalls of too tight or too loose thresholds. The sigmoid 

function provides smooth and continuous adjustment to prevent abrupt changes in refrigerator 

operation that could lead to instability. The dynamic adjustment is formulated in equation (20). 

 

Y(t) = Ybase(t) +
1

1+e
−k(PG(t−1)−PD(t−1))

                             (20) 

 

where Y(t) is the mismatch threshold and Ybase(t) is the base mismatch selected by the system 

operator. 

 

 

3. SIMULATION OF REFRIGERATOR COOLING AND WARMING BEHAVIOUR 

FOR TESTING PROPOSED RULE-BASED ALGORITHM 

 

The discrete thermal model of a vapor compressor refrigeration system (VCRS) is 

employed to simulate cooling and warming of refrigerator compartment in the testing phase of 
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the proposed rule-based peak shaving algorithm. The discrete models of the warm-up and cool-

down of the refrigerator compartment are given by equation (21) and (22) respectively.  

 

θc(t + ∆t) = (1 −
∆t

CL.Ri
) . θc(t) +

∆t

CL.Ri
. θa (t)                                  (21) 

 

θc(t + ∆t) = (1 −
∆t

CL.Ri
) . θc(t) +

∆t

CL.Ri
. θa (t) +

∆t

CL.Re
. θe(t)                (22) 

 

where  θc is the cabinet temperature at time t, CLis the heat storage capacity of cabinet, θa is 

the ambient temperature at time t, Ri is the thermal resistance of the insulation and θe is the 

evaporator temperature.                  

The cooling and warming behavior of the refrigerator is achieved with the controls in 

equation (23) where θcritical is the set threshold temperature. In the control, when S = 1, the 

refrigerator is turned ON and when S = 0 the refrigerator is turned OFF. 

 

θc(t + ∆t) = {
Cool,               θc(t) > θcritical, S = 1

Warm,            θc(t) < θcritical, S = 0
                    (23)  

 

The refrigerator power consumption is modelled according to equation (24). The 

refrigerator consumes rated power (Pr) when the compressor is ON and 0 when OFF.  

 

Pin(t) = {
0        ,  S = 0
Pr        ,  S = 1

                                          (24) 

 

The total power drawn by all the refrigerators within a timestep is given by equation 

(25). 

Ptotal(t) = ∑∑Si,tPin
i (t)

N

i=1

T

t=1

                                        (25) 

 

Algorithm 7 is used to simulate the thermal behavior of the refrigerators.  

 

Algorithm 7. Simulation of thermal behavior of multiple refrigerators 

Step Start simulation of thermal behavior of TCLs 

1 Inputs 

2 Number of refrigerators (N) 

3 𝜃𝑐
0 = [1,… ,𝑀]             // initial compartment temperature   

4 𝜃𝑎
0 = [1,… ,𝑀],            // initial ambient temperature  

5 𝜃𝑒
0 = [1,… ,𝑀],            // initial evaporator temperature  
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Step Start simulation of thermal behavior of TCLs 

6 ∆𝑡                     // time step  

7 Initialize all other parameters: 𝜃𝑟𝑒𝑓, 𝑃𝑟 

8 Simulation duration (T).   

9 Outputs: 

10 𝜃𝑐, Pin  

11 Main loop 

12 For ∆𝑡 =1: T 

13       For 𝑖 = 1: 𝑀 

14            If 𝜃𝑐(𝑡) < (𝜃𝑟𝑒𝑓)              

15                  Turn OFF 

16                  Update compartment temperature using equation (22) 

17                  Update refrigerator power (Pin) using equation (24) 

18           Else           

19                 Turn ON  

20                 Update compartment temperature using equation (23) 

21                 Update refrigerator power (Pin) using equation (24) 

22           End if 

23      End for 

24 End for 

25 End algorithm  

 

 

4. DESCRIPTION OF CASE STUDY SYSTEM, SIMULATION AND TESTING 

 

The study utilizes a dataset from Spanish Transmission Service Operators (TSO) 

spanning four years (2015-2018) [30] to test the proposed rule-based peak-shaving algorithm 

for scheduling refrigerators. The data includes electricity consumption, pricing, generation, and 

weather information. A unique aspect of this dataset is its granularity, offering hourly records 

for each variable. This level of detail is essential for accurately modelling and simulating the 

dynamic behavior of electricity demand and supply, which is critical for the study. The 

generation data comprises renewable energy sources i.e, solar and conventional energy sources 

i.e, thermal and geothermal. This mix of generation types allows for rigorous performance 

testing of the algorithm in a realistic and varied energy landscape.  

All generation sources except solar are combined as total generation to determine the 

optimal generation limit using Algorithm 1. The data mainly consist of hourly demand data. To 

test the scheduling ability of the algorithm, 30% of the hourly demand at each timestep is 

simulated as refrigerator demand to be scheduled. In the testing, 1000 refrigerators are 

simulated to represent the 30% demand at each hour.  The unit maximum power consumption 
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when a refrigerator is ON across the 48-hour period is given in Fig. 5. The day-ahead demand 

and generation forecast is done for December 30, 2018, and December 31, 2018. The optimal 

generation is determined for the first hour of December 30, 2018.  

Simulations were conducted on an Intel(R) Core (TM) i7-6600U CPU @ 2.60GHz 2.81 

GHz with 20.0 GB (19.9 GB usable) RAM using MATLAB simulation software. The 

parameters for simulating the rule-based peak shaving algorithm are given in Table 2. 

 

 

Fig. 5. Per unit rating of TCLs when ON for scheduling 

 

Table 2. Simulation parameters 

Parameter Value 

P G 
l (lower ) 0 MW 

P G 
l (upper ) Maximum historical generation  

T 48 hours 

Refrigerator power rating when ON (Pr) Based on Figure 4 

Mismatch sensitivity levels 0 kW, 500 kW, dynamic mismatch 

Population size of PGWO 100 

Number of refrigerators 1000 

Baseline status  Randomly generated 

θcritical 5 ℃ 

CL 1000 kW/℃ 

Ri 0.98℃/kW 

Re 0.09℃/kW 

Waiting time  20 Minutes 

Margin of identifying peak periods Demand exceeds generation by 5%  



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

106 

Parameter Value 

Base load for mismatch  500 kW 

θe Randomly simulated around -2℃ 

θa Real weather data for scheduling period 

Initial compartment temperature of 

refrigerators 

Randomly generated  

Batch Size 64 

Epochs 1000 

Learning rate 0.01 

 

4.1. Performance Evaluation Metrics  

 

To assess the performance of the proposed peak-shaving algorithm, the following 

metrics are considered. 

 

4.1.1. Peak Demand Reduction 

Peak demand reduction measures the extent to which the algorithm successfully reduces 

the highest electricity demand peaks during peak periods. It is calculated as the percentage 

decrease in peak demand after implementing the algorithm compared to the initial peak demand 

given by equation (26). 

 

Peak Demand Reduction (%) =
(Peak Demand Before − Peak Demand After)

Peak Demand Before
        (26) 

 

4.1.2. Energy Consumption 

The energy consumption analysis compares the total energy consumption before and 

after implementing the peak demand shaving algorithm. It assesses whether the algorithm 

effectively manages energy usage and leads to overall energy savings. Equation (27) is used to 

calculate the energy consumption increase or decrease. 

 

Energy Consumption Increase  (%) = 

 
(Total Energy Consumption After  − Total Energy Consumption Before)

Total Energy Consumption Before
      (27) 

 

4.1.3. Demand-Supply Mismatch 

Demand-supply mismatch metric quantifies the deviation between electricity demand 

and supply at any given time. It evaluates how well the algorithm balances demand and supply 

to minimize mismatches. This is calculated with equation (28) is used to calculate the demand 

and supply mismatch at each timestep during the scheduling period. 
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Demand − Supply  Mismatch = |Demand −  Supply |               (28) 

 

4.1.4. TCL Status Changes 

The TCL status changes metric refers to the frequency and magnitude of changes in the 

operating status (ON/OFF) of the TCLs in response to the algorithm's instructions. It evaluates 

the algorithm's ability to manage appliance operation efficiently while maintaining user comfort 

and minimizing disruptions. Equation (29) is used to calculate the total status changes of TCL 

during the scheduling period. 

 

Total Status Changes = ∑ |Si,t
b − Si,t

n |N
i=1                           (29) 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section presents discussions of the results obtained from implementing the 

proposed rule-based peak demand-shaving algorithm. The discussions focus on the impact of 

different scenarios of flexibility levels on the proposed algorithm’s effectiveness in peak 

shaving. The effectiveness is assessed based on peak demand reduction, total energy 

consumption reduction, refrigerator switching frequency, and the average mismatch between 

demand and supply. The results highlight the benefits and limitations of offering strict and 

dynamic flexibility into optimizing demand response programs. 

 

5.1. Scenario 1: Strict Flexibility Threshold  

 

The results of applying the proposed rule-based peak shaving algorithm with strict 

mismatch threshold is presented in Table 3. This scenario is simulated to assess the algorithm’s 

effectiveness for matching the demand exactly to the available generation at each timestep. 

 

Table 3. Performance Metrics for Strict Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  25107.83 MW 

Peak Demand Reduction  18.00% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1088485.3778 MWh 

Energy Consumption decrease  11.39% 

Total Status Changes in Refrigerators 13000 times 

Average Demand-Supply Mismatch  693.99 kW 
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Following the application of the proposed peak shaving algorithm, the peak demand was 

reduced from 30,619.00 MW to 25,107.83 MW, representing a significant reduction of 18.00%. 

This notable decrease demonstrates the algorithm's effectiveness in managing and lowering 

peak electricity demand, which is crucial for mitigating the need for costly peaking power 

plants, alleviating stress on the power grid, and potentially reducing electricity costs for 

consumers. Additionally, the total energy consumption decreased by 11.39%, from 

1,228,351.00 MWh to 1,088,485.38 MWh. This substantial reduction in energy consumption, 

a key indicator of the algorithm's effectiveness, highlights its ability to manage peak demand 

and achieve significant overall energy savings, which can contribute to more sustainable energy 

use and lower operational costs. However, the algorithm's strict mismatch threshold led to a 

high switching quantified in terms of total status changes in the refrigerators, with 13,000 status 

changes recorded. Each status change reflects a switch between ON and OFF states. While this 

frequent switching indicates the algorithm's responsiveness to maintain a tight balance between 

supply and demand, it may also pose a risk of increased wear and tear on the appliances, 

potentially reducing their lifespan and increasing maintenance costs. The average demand-

supply mismatch was 693.99 kW, reflecting the deviation between scheduled demand and 

available generation over the scheduling period. This mismatch arises due to the inherent 

difficulty in perfectly aligning demand with supply at every timestep, especially under the high 

variability of system conditions and the frequent switching triggered by the stringent mismatch 

threshold.  

Fig. 6 provides a detailed comparison of the scheduled demand, unscheduled demand, 

actual generation, and the updated optimum generation over the scheduling period, illustrating 

the performance of the peak shaving algorithm under the strict flexibility threshold.  

 

Fig.  6. Comparison of scheduled and unscheduled demand under strict flexibility threshold 
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5.2. Scenario 2: Base load as flexibility Threshold   

 

The results of applying the proposed rule-based peak shaving algorithm with a 

flexibility threshold of 500 kW across the scheduling period is presented in Table 4. This 

scenario is simulated to assess the algorithm’s effectiveness under some level of flexible 

threshold. 

 

Table 4. Performance Metrics for Base Load Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  24852.08 MW 

Peak Demand Reduction  18.83% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1081227.60 MWh 

Energy Consumption decrease  11.98% 

Total Status Changes in Refrigerators 3006 times 

Average Demand-Supply Mismatch  1118.64 kW 

 

After applying the peak shaving algorithm with a base load flexibility threshold, the 

peak demand was reduced from 30,619.00 MW to 24,852.08 MW, achieving an 18.83% 

reduction. This result shows a slightly higher peak demand reduction compared to the strict 

flexibility threshold scenario, with an additional reduction of 0.83%. This suggests that 

incorporating a flexibility limit can enhance the algorithm's effectiveness in reducing peak 

demand, allowing for more adaptable management of power usage. The total energy 

consumption after scheduling decreased by 11.98%, from 1,228,351.00 MWh to 1,081,227.60 

MWh. This is a marginal improvement over the strict flexibility threshold scenario, indicating 

that the use of a base load flexibility threshold not only maintains peak demand reduction but 

also results in greater overall energy savings. Moreover, the total number of status changes for 

refrigerators dropped significantly to 3,006. This is a substantial reduction compared to the 

strict flexibility scenario, indicating less frequent switching of TCLs. The decrease in switching 

events implies reduced wear and tear on appliances, potentially extending their lifespan and 

lowering maintenance costs, thereby highlighting the financial benefits of incorporating a 

flexibility threshold. However, the average demand-supply mismatch in this scenario increased 

to 1,118.64 kW. This higher mismatch suggests that while the flexibility allowance effectively 

reduces peak demand and energy consumption, it comes at the expense of a less precise 

alignment between demand and supply. This misalignment could lead to more frequent periods 

of surplus or deficit, impacting the overall efficiency of energy distribution.  
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Fig.7 compares the scheduled demand, unscheduled demand, actual generation, and 

updated optimum generation over the scheduling period, showcasing the impact of using a base 

load flexibility threshold on the peak shaving algorithm's performance.  

 

Fig. 7. Comparison of scheduled and unscheduled demand under base load flexibility threshold 

 

5.3.Scenario 3: Proposed Dynamic Flexibility Threshold  

 

The performance of the proposed rule-based peak shaving algorithm with dynamic 

flexibility thresholds is presented in Table 5. This scenario evaluates the effectiveness of the 

algorithm when the mismatch thresholds change dynamically based on system conditions. 

 

Table 5. Performance Metrics for Dynamic Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  24845.19 MW 

Peak Demand Reduction  18.89% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1079489.82 MWh 

Energy Consumption decrease  12.12% 

Total Status Changes in Refrigerators 3006 times 

Average Demand-Supply Mismatch  1012.41 kW 
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Applying dynamic flexibility thresholds led to a peak demand reduction of 18.89%, 

lowering the peak demand from 30,619.00 MW to 24,845.19 MW. This is the highest peak 

demand reduction observed across all scenarios, surpassing the strict mismatch threshold 

(18.00%) and the 500 kW flexibility threshold (18.83%). The results indicate that dynamic 

flexibility thresholds enhance the algorithm's ability to manage and reduce peak demand more 

effectively by adapting to real-time system conditions. Total energy consumption decreased by 

12.12%, from 1,228,351.00 MWh to 1,079,489.82 MWh. This represents the most significant 

reduction in energy consumption among all scenarios, outperforming both the strict mismatch 

threshold (11.39%) and the 500 kW flexibility limit (11.98%). The greater decrease in energy 

consumption under the dynamic threshold scenario underscores the improved overall energy 

efficiency achieved by adjusting the thresholds dynamically. The total number of status changes 

for refrigerators was 3,006, consistent with the 500 kW flexibility threshold scenario and 

significantly lower than the 13,000 status changes observed in the strict mismatch threshold 

scenario. This consistency in status changes indicates that both the dynamic and base load 

flexibility thresholds can maintain refrigerator operations more reliably, reducing frequent 

switching and potentially lowering wear and tear and maintenance costs. The average demand-

supply mismatch for the dynamic flexibility threshold scenario was 1,012.41 kW. While this is 

lower than the mismatch observed with the 500 kW flexibility limit (1,118.64 kW), it is higher 

than the mismatch in the strict mismatch threshold scenario (693.99 kW). This suggests that 

although the dynamic flexibility thresholds improve peak shaving and energy efficiency, it 

introduces a certain level of mismatch between demand and supply. However, the mismatches 

are within acceptable ranges. 

Fig. 8 compares the scheduled demand, unscheduled demand, actual generation, and 

updated optimum generation over the scheduling period, illustrating the impact of dynamic 

flexibility thresholds on the performance of the peak shaving algorithm.  

 

 

Fig. 8. Comparison of scheduled and unscheduled demand under dynamic flexibility threshold 
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Fig. 9 provides a comparison of scheduled demand across the three flexibility threshold 

scenarios: strict (0 kW), base load, and dynamic flexibility thresholds. The mismatches across 

the three flexibility threshold scenarios: strict (0 kW), base load, and dynamic flexibility 

thresholds are compared in Fig 10. This comparison helps to highlight how each approach 

impacts demand scheduling, particularly during peak periods. 

 

Fig. 9. Comparison of scheduled demand for different scenarios 

 

 

Fig. 70. Comparison of supply and demand mismatch after scheduling for different scenarios 
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Under the strict scenario (0 kW flexibility), demand must precisely match generation, 

resulting in higher scheduled and peak demand with a low average mismatch (693.99 kW) but 

many status changes (13,000). The base load scenario (500 kW static flexibility) smooths out 

demand, lowering peak demand (24,852.08 MW) and status changes (3,006) at the cost of a 

higher mismatch (1,118.64 kW). The dynamic scenario, which adjusts thresholds in real-time, 

achieves the lowest scheduled and peak demand (24,845.19 MW) and reduces energy 

consumption by 12.12%, striking a better balance with a moderate mismatch (1,012.41 kW). 

 

 

6. CONCLUSION AND FUTURE WORK 

 

This study introduced a novel rule-based peak shaving algorithm with a dynamic 

mismatch threshold designed to schedule refrigerators for peak demand management and 

maintain system stability in environments with limited generation capacity. The proposed 

algorithm operates within a framework that enables decision-making in both day-ahead and 

real-time scenarios to effectively schedule refrigerators. By utilizing historical data on demand 

and generation, the algorithm determines an optimal generation limit that system operators can 

aim to meet a day in advance. This generation limit is a key decision variable that informs the 

rules developed for the peak shaving algorithm, which adjusts the status of refrigerators in real 

time. Additionally, the algorithm uses day-ahead demand forecasts to anticipate peak and off-

peak periods, allowing for dynamic adjustments that reduce peak demand during high-load 

periods and optimize excess generation usage during low-load times, thereby enhancing grid 

stability and balance. The effectiveness of the algorithm was evaluated using network data from 

the Spanish Transmission Service Operators (TSO) over four years, under various flexibility 

threshold scenarios. The analysis revealed significant insights into how different flexibility 

allowances impact demand response performance. The main findings are summarized as 

follows: 

Strict No-Flexibility Threshold: In this scenario, where there is no flexibility allowance 

(0 kW mismatch threshold), the algorithm led to a notable increase in peak demand by 2.93% 

and a rise in total energy consumption by 6.73%. This outcome demonstrates the drawbacks of 

a strict mismatch threshold, which necessitates frequent switching of TCLs. This frequent 

switching increases operational stress and energy consumption, although it efficiently utilizes 

excess generation during off-peak periods. The results also indicate that while this approach 

minimizes the average demand-supply mismatch, it imposes challenges in precisely matching 

supply and demand, especially under stringent conditions. 

Base Load Flexibility Threshold: With a higher mismatch allowance of 1000 kW, the 

peak demand showed a slight increase of 0.08%, and total energy consumption rose by 3.97%. 

While this scenario offers some improvement over the strict no-flexibility condition by 

reducing the total status changes and operational stress on appliances, it still results in higher 
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energy use. The increased flexibility helps better manage demand-supply alignment and reduce 

the frequency of TCL switching, suggesting that some flexibility can alleviate operational 

inefficiencies while still making effective use of excess generation during off-peak times. 

Dynamic Flexibility Threshold: The dynamic mismatch threshold scenario yielded the 

best results, with a substantial reduction in peak demand by 4.25% and a slight decrease in total 

energy consumption by 0.59%. This indicates that incorporating dynamic flexibility can 

significantly optimize demand response and enhance energy efficiency. The algorithm also 

reduced the total status changes in TCLs to 3,000, highlighting decreased switching frequency 

and less operational stress on appliances. The higher average demand-supply mismatch in this 

scenario suggests a well-balanced approach to managing demand and supply, effectively 

accommodating variations in grid conditions. 

The comparative analysis across these scenarios demonstrates the benefits of integrating 

dynamic flexibility into demand response strategies. The dynamic approach not only reduces 

peak demand and total energy consumption but also minimizes the operational impact on 

appliances, as evidenced by fewer status changes. These findings underline the potential for 

dynamic flexibility to enhance the effectiveness of demand response programs. 

Future research will focus on incorporating dynamic flexibility thresholds into demand 

response programs that integrate renewable energy sources. By dynamically adjusting 

flexibility thresholds based on real-time network conditions, such programs can significantly 

improve peak demand management and energy efficiency. Utilities and policymakers are 

encouraged to adopt flexible demand response strategies that adapt to changing conditions, 

leveraging the benefits of dynamic flexibility to ensure a more resilient and efficient power 

grid. 
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